organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Da-Qing Shi,^{a,b}* Li-Hui Niu,^a Xiang-Shan Wang,^{a,b} Qi-Ya Zhuang^{a,b} and Yong Zhang^c

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, ^bThe Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China, and ^cSchool of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (C–C) = 0.003 Å H-atom completeness 74% Disorder in main residue R factor = 0.059 wR factor = 0.163 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 2-amino-4-(4-methoxyphenyl)-7-methyl-5-oxopyrano[3,2-c]pyran-3-carboxylate

The title compound, $C_{19}H_{19}NO_6$, was synthesized by the reaction of 4-hydroxy-6-methylpyran-2-one and ethyl 4'-methoxy-2-cyanocinnamate in the presence of triethylbenzyl-ammonium chloride in an aqueous medium. The pyranone ring is almost planar, while the fused pyran ring adopts a flattened boat conformation. The amino group is involved in both intra- and intermolecular $N-H\cdots O$ hydrogen bonds.

Received 5 October 2004 Accepted 11 November 2004 Online 20 November 2004

Comment

4*H*-Chromene is a construction unit of some natural products. 4*H*-Chromenes with amino and cyano groups are also a synthon of some special natural products (Hatakeyama *et al.*, 1998; O'Callaghan & McMurry, 1995). We have recently reported the synthesis of some 4*H*-chromene derivatives (Shi *et al.*, 2002; Zhuang *et al.*, 2002; Wang *et al.*, 2004). As part of our program aimed at developing new and environmentally friendly methodologies for the preparation of fine chemicals (Shi *et al.*, 2003), we report here the crystal structure of the title compound, (I).

In (I), the pyranone ring is almost planar, with deviations less than 0.014 (2) Å. The fused pyran ring adopts a flattened boat conformation: atoms O1, C1, C2 and C3 are coplanar, while atoms C4 and C5 deviate from the plane by 0.177 (3) and 0.137 (2) Å, respectively. A similar conformation was observed in the structure of 2-amino-4-(2-chlorophenyl)-3-ethoxycarbonyl-4*H*-benzo[*f*]chromene (Zhuang *et al.*, 2003). The dihedral angle between the pyranone and the substituted phenyl ring is 84.5 (3)°. In addition, because of the existence of a conjugated system, the C1–N1 bond length of 1.339 (2) Å is shorter than the typical Csp^2 –N bond distance (Lorente *et al.*, 1995). In the crystal structure, the amino group (N1) is involved in both intra- and intermolecular N–H···O hydrogen bonds (Fig. 2 and Table 2).

Experimental

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound, (I), was prepared by the reaction of 4-hydroxy-6methylpyran-2-one (0.25 g, 2 mmol) and ethyl 4'-methoxy-2-cyanocinnamate (0.46 g, 2 mmol) in the presence of triethylbenzylammonium chloride (0.2 g) in water (10 ml) at 363 K for 18 h (yield 87%, m.p. 445–447 K). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an aqueous ethanol solution. ¹H NMR (DMSO- d_6 , δ): 1.09 (3H, t, J = 7.2 Hz, CH₃), 2.21 (3H, s, CH₃), 3.69 (3H, s, CH₃O), 3.97 (2H, q, J = 7.2 Hz, CH₂O), 4.48 (1H, s, CH), 6.28 (1H, s, ArH), 6.79 (2H, d, J = 6.8 Hz, ArH), 7.07 (2H, d, J =6.8 Hz, ArH), 7.66 (2H, s, NH₂).

> $D_x = 1.369 \text{ Mg m}^{-3}$ Mo *K* α radiation

reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 193 (2) KBlock, colorless $0.75 \times 0.65 \times 0.45 \text{ mm}$

 $R_{\rm int}=0.022$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h=-13\rightarrow13$

 $k = -10 \rightarrow 11$

 $l = -23 \rightarrow 23$

Cell parameters from 7929

3575 reflections with $I > 2\sigma(I)$

Crystal data

C19H19NO6
$M_r = 357.35$
Monoclinic, $P2_1/c$
a = 10.720 (4) Å
b = 8.934 (3) Å
c = 18.167 (6) Å
$\beta = 94.636 \ (7)^{\circ}$
$V = 1734.2 (10) \text{ Å}^3$
Z = 4

Data collection

Rigaku Mercury diffractometer ω scans Absorption correction: multi-scan (Jacobson, 1998) $T_{min} = 0.914, T_{max} = 0.955$ 18 580 measured reflections 3947 independent reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0836P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.059$ $w = 1/[\sigma^2(F_o^2) + (0.0836P)^2$
 $wR(F^2) = 0.163$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.08 $(\Delta/\sigma)_{max} < 0.001$

 3947 reflections
 $\Delta\rho_{max} = 0.69$ e Å⁻³

 255 parameters
 $\Delta\rho_{min} = -0.29$ e Å⁻³

 H atoms treated by a mixture of independent and constrained refinement
 $\sigma_{min} = -0.29$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

O1-C5	1.373 (2)	N1-C1	1.339 (2)
O1-C1	1.376 (2)	C1-C2	1.369 (3)
O2-C6	1.214 (2)	C2-C3	1.529 (2)
O3-C7	1.372 (2)	C3-C4	1.512 (2)
O3-C6	1.394 (2)		
C5-O1-C1-C2	-7.7 (3)	C1-O1-C5-C4	5.3 (3)
O1-C1-C2-C3	1.5 (3)	C7-O3-C6-C4	-0.2(3)
C1-C2-C3-C4	6.1 (2)	C5-C4-C6-O3	-1.4(3)
C2-C3-C4-C5	-8.5(2)	C6-O3-C7-C8	0.6 (3)
C3-C4-C5-O1	3.3 (3)	O3-C7-C8-C5	0.7 (3)
C6-C4-C5-C8	2.7 (3)	C4-C5-C8-C7	-2.4 (3)

 Table 2

 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C18-H18C\cdots O4^{i}$ $C19-H19C\cdots O6^{ii}$	0.98	2.52	3.344 (3)	142
	0.98	2.57	3.410 (3)	144
$N1-H1A\cdots O4$	0.88 (3)	1.95 (3)	2.651 (3)	136 (3)
$N1-H1B\cdots O2^{iii}$	0.88 (3)	2.11 (3)	2.834 (2)	139 (2)

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 + x, y, z; (iii) x, y - 1, z.

Atom C11 is disordered over two sites, C11A and C11B. The siteoccupancy factors were estimated to be 0.72 and 0.28, respectively. H

Figure 1

The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown for C11; H atoms were not located for C10 and C11..

Figure 2

A molecular packing diagram for (I). One of two possible positions of atom C11 has been omitted for clarity. The dashed lines indicate short contacts.

atoms bonded to C atoms were positioned geometrically, except for the disordered ethyl group (C10, C11A and C11B), and were treated as riding, with C–H distances in the range 0.95–1.00 Å, and with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm C}_{\rm methyl})$. The amino H atoms were located from difference Fourier maps and refined isotropically, with N–H distances restrained to 0.88 (3) Å. The maximum residual electron density is located 0.97 Å from C10, but this could not easily be treated as an H atom in view of the disorder.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 1997);

program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Foundation of the Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province for financial support.

References

Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1998). J. Chem. Soc. Chem. Commun. pp. 1202–1204.

Jacobson, R. (1998). Private communication to the Rigaku Corporation.

Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). *Can. J. Chem.* **73**, 1546–1555.

O'Callaghan, C. N. & McMurry, T. B. H. (1995). J. Chem. Res. (S), pp. 214–215. Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, D. Q., Chen, J., Zhuang, Q. Y. & Hu, H. W. (2003). J. Chem. Res. (S), pp. 674–675.

Shi, D. Q., Wang, X. S. & Tu, S. J. (2002). Chin. J. Org. Chem. 22, 1053–1056.

Wang, J., Shi, D.-Q. & Wang, X.-S. (2004). Acta Cryst. E60, o1401-o1402.

- Zhuang, Q. Y., Shi, D. Q., Tu, S. J. & Wang, X. S. (2002). *Chin. J. Appl. Chem.* **19**, 1019–1020.
- Zhuang, Q.-Y., Shi, D.-Q. & Wang, X.-S. (2003). Acta Cryst. E59, 01474-01475.